Sra. Dir	ectora del Dep	artamento
de Indu	ıstrias	
Dra. An	drea Nieto	
S	/	D

REFERENCIA: EX-2024-01929789- - UBA-DMESA#FCEN

De nuestra consideración:

Los abajo firmantes, integrantes titulares del Jurado designado para actuar en el Concurso **de AYUDANTE DE SEGUNDA** tramitado por el expediente de referencia, aprobado por Res. CD 631/24, **área INDUSTRIAS** de este Departamento, han fijado la prueba de oposición que a continuación se detalla, a fines de valorar la capacidad e idoneidad del aspirante a la docencia.

La misma se basará en la exposición en el pizarrón del siguiente problema (Serie de problemas de Operaciones Unitarias I):

PROBLEMA A RESOLVER:

En una industria se emplea vapor saturado a 2 atm para calentar una corriente de agua en un intercambiador de placas. Para transportarlo desde la caldera hasta el intercambiador, se emplea un caño horizontal de acero sin aislación, de 3 pulgadas de diámetro externo. La temperatura del aire circundante es de 20 °C.

- a) Con respecto a la transferencia de calor, ¿existe/n resistencia/s despreciable/s? Explique brevemente.
- b) Calcule la pérdida de calor al ambiente por metro de cañería.
- c) Calcule la cantidad de vapor que condensa por unidad de tiempo, por metro de cañería.

Datos: $g=9,81\frac{m}{s^2}$ Propiedades del vapor de agua: $T_{saturación~(2~atm)}=120~^{\circ}C;~\Delta H_{vaporización~(2~atm)}=2202,59~\frac{kJ}{kg}$ Propiedades del aire a 20 °C: $k=0,027\frac{W}{m\cdot {}^{\circ}C}$; $\nu=1,75\cdot 10^{-5}\frac{m^2}{s}$; Pr=0,72

Se incluye anexo de correlaciones para la transferencia de calor por convección.

XIV. <u>Correlaciones para transferencia de calor por convección</u> Adimensionales:

$$Re = \frac{\rho \cdot v \cdot L}{\mu}$$
; $Pr = \frac{\mu \cdot C_p}{k}$; $Nu = \frac{h \cdot L}{k}$

L= longitud característica (placa: longitud, caño: diámetro, esfera: diámetro)

a) Correlaciones para Convección Forzada

1- Flujo paralelo a una placa plana:

$$5.10^5 < \text{Re} < 10^8$$
; $0.6 < \text{Pr} < 60$; L= longitud de la placa paralela al flujo

2- Flujo alrededor de una esfera:

Régimen laminar (Ranz y Marshall, para gotas que caen libremente): Nu = 2 + 0,6 Re ^{1/2} Pr ^{1/3}

- Régimen turbulento:
$$Nu = 2 + (0.4 \text{ Re}^{1/2} + 0.06 \text{ Re}^{2/3}) \text{ Pr}^{-0.4} (\mu/\mu_s)^{1/4}$$

$$3.5 < \text{Re} < 7.6.10^4$$
; $0.71 < \text{Pr} < 380$; $1 < \mu/\mu_S < 3.2$

Propiedades a la temperatura del film, salvo μ_S que debe evaluarse a la temperatura

media del sólido.

3- Flujo en caños:
- Flujo laminar: Re< 2100; (Re Pr D/L)> 100; Nu = 1,86 (Re Pr D/L) 1/3 (μ/μw) 0,14

- Flujo turbulento:

• Dittus-Boelter Nu = 0,023 ·Re^{0,8}·Prⁿ a = 0,4 para calentamiento, a = 0,3 para enfriamiento

Re >10⁴; 0,7 < Pr < 100; L/D > 60 Propiedades a la temperatura media del fluido

El St (N° de Stanton) se evalúa a la temperatura media del fluido (Tm), mientras que Re y Pr se evalúana la temperatura media del film [Tfilm = (Tm + Tw)/2]

• Sieder-Tate St = Nu /(Re Pr) = h /(
$$\rho$$
 v ∞ Cp) = 0,023 Re $^{-0.2}$ Pr $^{-2/3}$ (μ/μ_W) $^{0.14}$

Las propiedades se evalúan a la temperatura media del fluido (T_m), excepto μ_W (viscosidad a la temperatura de la pared). Es útil cuando se tienen aceites.

b) Correlaciones para Convección Natural

Para superficies verticales o cilindros horizontales (x₁: longitud de la superficie o diámetro del cilindro) Nu = $a \cdot (Gr \cdot Pr)^{m}$ $Gr = D^{3} \rho^{2} g \beta \Delta T/\mu^{2}$ $Ra = Gr \cdot Pr$

Rango para [Ra]	m		Cilindros horizontales de "a"
Ra < 10 ⁴	1/6	1,36	1,09
10 ⁴ < Ra < 10 ⁹	1/4	0,59	0,53
Ra > 10 ⁹	1/3	0,13	0,13

Duración de la prueba de oposición: 15 (quince) minutos de exposición, y 5 (cinco) para preguntas.

Fecha de la prueba de oposición: Martes 02 de julio de 2024 a las 12:00 hs.

Lugar de la prueba de oposición: Presencial, Departamento de Industrias, aula a designar.

Nota: El orden de exposición se estableció teniendo en cuenta los requerimientos laborales/docentes de los postulantes. La prueba de oposición se realizará según el siguiente orden:

POSTULANTE	HORARIO
AGRANATTI, Carola	12:00
ALVAREZ PRAINO, Valentina Elizabeth	12:25
BODMER, Inés	12:50
FERRERO, Loana	13:15
GRECCO, Macarena	13:40
JASTREBOW, Iara Gabriela	14:05
PACAJES PACO, Daniela Belén	14:30

Dra. María Bernarda Coronel Jurado Titular Dr. Santiago N. Fleite Jurado Titular Dra. Carolina Arzeni Jurado Titular